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Macroscopic scale: the empirical spectral measure

Suppose that M is an n × n random matrix with eigenvalues
λ1, . . . , λn.

The empirical spectral measure µ of M is the (random) measure

µ :=
1
n

n∑
k=1

δλk .
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Wigner’s Theorem

For each n ∈ N, let {Yi}1≤i , {Zij}1≤i<j be independent
collections of i.i.d. random variables, with

EY1 = EZ12 = 0 EZ 2
12 = 1 EY 2

1 <∞.

Let Mn be the symmetric random matrix with diagonal entries Yi
and off-diagonal entries Zij or Zji .

The empirical spectral measure µn of
1√
n Mn is close, for large n, to the

semi-circular law:

1
2π

√
4− x21|x |≤2dx .
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Other examples

The circular law (Ginibre):
The empirical spectral measure of a
large random matrix with i.i.d.
Gaussian entries is approximately
uniform on a disc.

The classical compact groups
(Diaconis–Shahshahani):
The empirical spectral measure of a
uniform random matrix in
O (n) ,U (n) ,Sp (2n) is approximately
uniform on the unit circle when n is
large.
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Other examples

Truncations of random unitary matrices
(Petz–Reffy):
Let Um be the upper-left m ×m block of a uniform random
matrix in U (n), and let α = m

n .

For large n, the empirical
spectral measure of Um is close to the measure with density

fα(z) =

{ 2(1−α)
α(1−|z|2)2 , 0 < |z| <

√
α;

0, otherwise.

α = 4
5 α = 2

5

Figures from “Truncations of random unitary matrices”, Życzkowski–Sommers, J. Phys. A, 2000
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Other examples

Brownian motion on U (n) (Biane):
Let {Ut}t≥0 be a Brownian motion on U (n); i.e., a solution to

dUt = UtdWt −
1
2

Utdt ,

with U0 = I and Wt a standard B.M. on u(n). There is a
deterministic family of measures {νt}t≥0 on the unit circle such
that the spectral measure of Ut converges weakly almost surely
to νt .



Other examples

Brownian motion on U (n):



Levels of randomness

Let µn be the (random) spectral measure of an n × n random
matrix, and let ν be some deterministic measure which
supposedly approximates µn.

The annealed case:

The ensemble-averaged spectral measure is Eµn:∫
fd(Eµn) := E

∫
fdµn.

One may prove that Eµn ⇒ ν, possibly via explicit bounds on
d(Eµn, ν) in some metric d(·, ·).
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Levels of randomness

The quenched case:

I Convergence weakly in probability or weakly almost surely:
for any bounded continuous test function f ,∫

f dµn
P−→
∫

f dν or
∫

f dµn
a.s.−−→

∫
f dν.

I The random variable d(µn, ν):
Look for εn such that with high probability (or even
probability 1),

d(µn, ν) < εn.
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Microscopic scale: eigenvalue rigidity

In many settings, eigenvalues concentrate strongly about
“predicted locations”.
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The eigenvalues of Um for m = 1,5,20,45,80, for U a
realization of a random 80× 80 unitary matrix.



Theorem (E. M.–M. Meckes)
Let 0 ≤ θ1 < θ2 < · · · < θn < 2π be the eigenvalue angles of
Up, where U is a Haar random matrix in U (n). For each j and
t > 0,

P
[∣∣∣∣θj −

2πj
N

∣∣∣∣ > 4π
N

t
]
≤ 4 exp

−min

 t2

p log
(

N
p

)
+ 1

, t


 .



Concentration of empirical spectral measures
2-D Coulomb gases

Coulomb transport inequality (Chafaı̈–Hardy–Maı̈da): Consider
the 2-D Coulomb gas model with Hamiltonian

Hn(z1, . . . , zn) = −
∑
j 6=k

log |zj − zk |+ n
n∑

j=1

V (zj);

let µV denote the equilibrium measure. There is a constant CV
such that

dBL(µ, µV )2 ≤W1(µ, µV )2 ≤ CV [EV (µ)− EV (µV )] ,

where EV is the modified energy functional

EV (µ) = E(µ) +

∫
Vdµ.
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Truncations of random unitary matrices

Let U be distributed according to Haar measure in U (n) and let

1 ≤ m ≤ n. Let Um denote the top-left m ×m block of
√

n
m U.

The eigenvalue density of Um is given by

1
c̃n,m

∏
1≤j<k≤m

|zj − zk |2
m∏

j=1

(
1− m

n
|zj |2

)n−m−1
dλ(z1) · · · dλ(zn),

which corresponds to a two-dimensional Coulomb gas with
external potential

Ṽn,m(z) =

−
n−m−1

m log
(
1− m

n |z|
2) . |z| <√ n

m ;

∞, |z| ≥
√

n
m .



Truncations of random unitary matrices
Theorem (M.–Lockwood)
Let µm,n be the spectral measure of the top-left m ×m block of√

n
m U, where U is a random n × n unitary matrix and

1 ≤ m ≤ n − 2 log(n). Let α = m
n , and let να have density

gα(z) =

{ 2(1−α)
(1−α|z|2)2 , 0 < |z| < 1;

0, otherwise.

then

P[dBL(µm,n, να) > r ] ≤ e−Cαm2r2+2m[log(m)+C′α] + e−cn,

where Cα = min
{

1
log(α−1)

,1
}

and

C′α ∼

{
log( 1

α), α→ 0;

log(1− α), α→ 1.



Concentration of empirical spectral measures
Ensembles with concentration properties

If M is an n × n normal matrix with spectral measure µM and
f : C→ R is 1-Lipschitz, it follows from the Hoffman-Wielandt
inequality that

M 7→
∫

fdµM

is a 1√
n -Lipschitz function of M.

=⇒ For any reference measure ν,

M 7→W1(µM , ν)

is 1√
n -Lipschitz
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Concentration of empirical spectral measures
Many random matrix ensembles satisfy the following
concentration property:

Let F : S ⊆MN → R be 1-Lipschitz with respect to ‖ · ‖H.S..
Then

P
[∣∣F (M)− EF (M)

∣∣ > t
]
≤ Ce−cNt2

.

Some Examples:
I GUE; Wigner matrices in which the entries satisfy a

quadratic transportation cost inequality with constant c√
N

.

I Wishart (sort of)

I Haar measure and heat kernel measure on the compact
classical groups: SO (N), U (N), SU (N), Sp (2N)

I Ensembles with matrix density ∝ e−N Tr(u(M)), with
u′′(x) ≥ c > 0.
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Typical vs. average

In ensembles with the concentration property, W1(µn, ν), this
means

P[W1(µn, ν) > EW1(µn, ν) + t ] ≤ Ce−cN2t2
.

   To show W1(µn, ν) is typically small, it’s enough to show
that EW1(µn, ν) is small.
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Average distance to average
One approach: consider the stochastic process

Xf :=

∫
fdµn − E

∫
fdµn.

Under the concentration hypothesis, {Xf}f satisfies a
sub-Gaussian increment condition:

P
[
|Xf − Xg | > t

]
≤ 2e

− cn2t2

|f−g|2L .

Dudley’s entropy bound together with approximation theory,
truncation arguments, etc., can lead to a bound on

EW1(µn,Eµn) = E

(
sup
|f |L≤1

Xf

)
.
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Theorem (M.–Melcher)
Let µN

t be the spectral measure of Ut , where {Ut}t≥0 is a
Brownian motion on U (n) with U0 = I.

1. For any t , x > 0,

P

(
W1(µN

t , µ
N
t ) > c

(
t

N2

)1/3

+ x

)
≤ 2e−

N2x2
t .

2. There are constants c,C such that for T ≥ 0 and
x ≥ c T 2/5 log(N)

N2/5 ,

P

(
sup

0≤t≤T
W1(µN

t , νt ) > x

)
≤ C

(
T
x2 + 1

)
e−

N2x2
T .

In particular, with probability one for N sufficiently large

sup
0≤t≤T

W1(µN
t , νt ) ≤ c

T 2/5 log(N)

N2/5 .
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Second approach: Eigenvalue rigidity!

The set of eigenvalues of many types of random matrices are
determinantal point processes with symmetric kernels:

KN(x , y) Λ

GUE
n−1∑
j=0

hj(x)hj(y)e−
(x2+y2)

2 R

U (N)
N−1∑
j=0

eij(x−y) [0,2π)

Complex Ginibre
1
π

N−1∑
j=0

(zw)j

j!
e−

(|z|2+|w|2)
2 {|z| = 1}
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The gift of determinantal point processes

Theorem (Hough/Krishnapur/Peres/Virág)
Let K : Λ× Λ→ C be the kernel of a determinantal point
process, and suppose the corresponding integral operator is
self-adjoint, nonnegative, and locally trace-class.

For D ⊆ Λ, let ND denote the number of particles of the point
process in D. Then

ND
d
=
∑

k

ξk ,

where {ξk} is a collection of independent Bernoulli random
variables.
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Concentration of the counting function

Since ND is a sum of i.i.d. Bernoullis, Bernstein’s inequality
applies:

P [|ND − END| > t ] ≤ 2 exp

(
−min

{
t2

4σ2
D
,

t
2

})
,

where σ2
D = VarND.
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Rigidity of individual eigenvalues

If U is a random unitary matrix, then U has eigenvalues

{eiθk}Nk=1,

for 0 ≤ θ1 < θ2 < · · · < θN < 2π.
We define the predicted locations to be

{e
2πik

N }Nk=1.

concentration
of N[0,θ]

   concentration
of eiθk about e

ik
N

   EW1(µN , ν) ≤
C
√

log(N) + 1
N

,

where ν is the uniform distribution on S1 ⊆ C.
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{e
2πik

N }Nk=1.

concentration
of N[0,θ]

   concentration
of eiθk about e

ik
N

   EW1(µN , ν) ≤
C
√

log(N) + 1
N

,

where ν is the uniform distribution on S1 ⊆ C.



Rigidity of individual eigenvalues

If U is a random unitary matrix, then U has eigenvalues

{eiθk}Nk=1,

for 0 ≤ θ1 < θ2 < · · · < θN < 2π.
We define the predicted locations to be

{e
2πik

N }Nk=1.

concentration
of N[0,θ]

   concentration
of eiθk about e

ik
N

   EW1(µN , ν) ≤
C
√

log(N) + 1
N

,

where ν is the uniform distribution on S1 ⊆ C.
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