Convergence of spectral measures
and eigenvalue rigidity

Elizabeth Meckes

Case Western Reserve University

ICERM, March 1, 2018



Macroscopic scale: the empirical spectral measure



Macroscopic scale: the empirical spectral measure

Suppose that M is an n x n random matrix with eigenvalues
A1 g ey An.

The empirical spectral measure p of M is the (random) measure

1 n
0 = nl;&\k.



Macroscopic scale: the empirical spectral measure

Suppose that M is an n x n random matrix with eigenvalues
)\1 gee ey An.

The empirical spectral measure u of M is the (random) measure
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Wigner’'s Theorem

Foreach n € N, let {Yi}1<;, {Zj}1<i<; be independent
collections of i.i.d. random variables, with

EYi =EZ>=0 EZ122:1 EY12<OO

Let M, be the symmetric random matrix with diagonal entries Y;
and off-diagonal entries Z; or Z;.

The empirical spectral measure 1., of
%Mn is close, for large n, to the
semi-circular law:

1
Z V4 — X2ﬂ|x‘§2dx.
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The circular law (Ginibre):
The empirical spectral measure of a
large random matrix with i.i.d.
Gaussian entries is approximately
uniform on a disc.
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The circular law (Ginibre):
The empirical spectral measure of a
large random matrix with i.i.d.
Gaussian entries is approximately
uniform on a disc.

The classical compact groups
(Diaconis—Shahshahani):

The empirical spectral measure of a
uniform random matrix in
O(n),U(n),Sp (2n) is approximately
uniform on the unit circle when nis
large.
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Other examples

Truncations of random unitary matrices
(Petz—Reffy):

Let U, be the upper-left m x m block of a uniform random
matrix in U (n), and let « = ™. For large n, the empirical
spectral measure of Uy, is close to the measure with density
204 0< 2 < Va

0, otherwise.
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Figures from “Truncations of random unitary matrices”, Zyczkowski-Sommers, J. Phys. A, 2000



Other examples

Brownian motion on U (n) (Biane):
Let {U;}+~0 be a Brownian motion on U (n); i.e., a solution to

dU; = UrdW; — %Utdt,

with Up = I and W; a standard B.M. on u(n). There is a
deterministic family of measures {v;}:~o on the unit circle such
that the spectral measure of U; converges weakly almost surely
to v4.



Other examples

Brownian motion on U (n):
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Levels of randomness

Let 1, be the (random) spectral measure of an n x n random
matrix, and let » be some deterministic measure which
supposedly approximates .

The annealed case:

The ensemble-averaged spectral measure is Epp:

/ fd(Epn) := E/ fdpn.

One may prove that Eu, = v, possibly via explicit bounds on
d(Epn, v) in some metric d(-, -).
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The quenched case:

» Convergence weakly in probability or weakly almost surely:
for any bounded continuous test function f,
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Levels of randomness

The quenched case:

» Convergence weakly in probability or weakly almost surely:
for any bounded continuous test function f,

/ flpuy B / fdv or / Felun 25 / fdlv.

» The random variable d(un, v):
Look for ¢, such that with high probability (or even
probability 1),
d(un,v) < en.



Microscopic scale: eigenvalue rigidity



Microscopic scale: eigenvalue rigidity

In many settings, eigenvalues concentrate strongly about
“predicted locations”.



Microscopic scale: eigenvalue rigidity

In many settings, eigenvalues concentrate strongly about
“predicted locations”.




m=45

The eigenvalues of U™ for m = 1,5, 20,45, 80, for U a
realization of a random 80 x 80 unitary matrix.



Theorem (E. M.—M. Meckes)

Let0 <6y <0 <--- <6, <27 be the eigenvalue angles of
UP, where U is a Haar random matrix in U (n). For each j and

t>0,
2
>£;\7;t]§4exp —min t—N,t .
plog<5)+1

2rj
%—N

7|
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Concentration of empirical spectral measures

2-D Coulomb gases

Coulomb transport inequality (Chafai—-Hardy—Maida): Consider
the 2-D Coulomb gas model with Hamiltonian

Hn(z1,...,2n Zlog\z]—zk\JrnZsz
jZk

let 1y denote the equilibrium measure. There is a constant Cy
such that

(i, 1v)? < Wi, pv)? < Cy [Ev(p) — Ev(pv)],
where £y is the modified energy functional

Ev(p) = Eu) + / V.



Truncations of random unitary matrices

Let U be distributed according to Haar measure in U (n) and let

1 < m < n. Let Uy, denote the top-left m x m block of ﬁu.
The eigenvalue density of Uy, is given by

1 2T (1= Piz2)" " arzr) - da
= I \z,-—zk\H1( -~ |zP) (21) -+ d\(z0),

M <jck<m

which corresponds to a two-dimensional Coulomb gas with
external potential

N —n=m=ljag (1 — ™|2]2). |z| <
Vn,m(z){ 7t log (1~ 712?)

\f
00, 21> /2



Truncations of random unitary matrices
Theorem (M.—Lockwood)
Let jum.n be the spectral measure of the top-left m x m block of
\/% U, where U is a random n x n unitary matrix and
1 <m< n-2log(n). Leta =7, and let v, have density

2(1—«) .
Oa(z) = { (-alzP)?’ 0<lzl<1;
0, otherwise.

then

P[dBL(,Um.mVa) > I’] < efCam2r2+2m[/og(m)+Cg] + e

)

where C, = min {MTU’ 1} and

c Iog(é), a— 0;
“ log(1 —a), a—1.
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Ensembles with concentration properties

If Mis an n x n normal matrix with spectral measure 1y, and
f: C — R is 1-Lipschitz, it follows from the Hoffman-Wielandt
inequality that

Mb—>/fd,u/\//

is a \iﬁ]-Lipschitz function of M.



Concentration of empirical spectral measures

Ensembles with concentration properties

If Mis an n x n normal matrix with spectral measure 1y, and
f: C — R is 1-Lipschitz, it follows from the Hoffman-Wielandt
inequality that

Mb—>/fd,u/\//

is a \iﬁ]-Lipschitz function of M.

— For any reference measure v,
M — W~| (/J,M, V)

is \im—Lipschitz
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Concentration of empirical spectral measures
Many random matrix ensembles satisfy the following
concentration property:

Let F: S C My — R be 1-Lipschitz with respect to || - || 4.s..
Then ,
IP’UF(M) —EF(M)| > t} < Ce°NE,

Some Examples:

» GUE; Wigner matrices in which the entries satisfy a

quadratic transportation cost inequality with constant ﬁ

» Wishart (sort of)

» Haar measure and heat kernel measure on the compact
classical groups: SO (N), U (N), SU (N), Sp (2N)

» Ensembles with matrix density o« e~ NT (M) " with
u’(x) >c>0.
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Typical vs. average

In ensembles with the concentration property, Wi (un,v), this
means

P[Wi(un,v) > EW;(un,v) + ] < Ce N

A To show W, (1, v) is typically small, it's enough to show
that EWs (pn, v) is small.
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Average distance to average
One approach: consider the stochastic process

Xi = /fdun—E/fdun.

Under the concentration hypothesis, { X;}r satisfies a
sub-Gaussian increment condition:

PR

P [|X; — Xg| > t] <2e 9L

Dudley’s entropy bound together with approximation theory,
truncation arguments, etc., can lead to a bound on

IflL<1
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1. Foranyt,x >0,

NN t\1/3 N2x2
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Theorem (M.—Melcher)

Let ;1Y be the spectral measure of U, where {Uy} > is a
Brownian motion on U (n) with Uy = I.

1. Foranyt,x >0,
1/3
t 7N2x2
1P’<W1(M§V,M§V)>C<N2> +X>52e .

2. There are constants c, C such that for T > 0 and

T2/5log(N)
X2 C—pps s

0<t<T

T 2)(2
P(sup W1(/1/§V,yt) >x> < C<X2+1> e

In particular, with probability one for N sufficiently large

T2/5log(N)
Wi(uN, 1) < c—— i’
Sup, 1(ue's ) < 67
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Second approach: Eigenvalue rigidity!

The set of eigenvalues of many types of random matrices are
determinantal point processes with symmetric kernels:

| | Kn(x.Y) [ A ]
n- 21y2)
GUE > h(x)h(y)e 2 R
j=0
N_1 .
U (N) > el [0, 27)
j=0
N—-1 —] 22 W2
Complex Ginibre | - (zjf’:’) e 2 | Izl =1}
v e
j=0
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The gift of determinantal point processes

Theorem (Hough/Krishnapur/Peres/Virag)

Let K : A x N — C be the kernel of a determinantal point
process, and suppose the corresponding integral operator is
self-adjoint, nonnegative, and locally trace-class.

For D C A, let Np denote the number of particles of the point
process in D. Then
d
Np =) &,
K

where {{«} is a collection of independent Bernoulli random
variables.
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Concentration of the counting function

Since Np is a sum of i.i.d. Bernoullis, Bernstein’s inequality
applies:

2
P[INp —ENp| > t] < 2exp (—min{ i t})j

40%7 2

where o2 = Var Np.
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Rigidity of individual eigenvalues
If U is a random unitary matrix, then U has eigenvalues

{emk }l,y:1 ’

for0 <61 <b><---<fy<2m.
We define the predicted locations to be

2mik
{ew }/7:1-
concentration concentration
of Mog of e/ about en
C+/log(N) + 1
A EW;(un,v) < glgl)Jra

where v is the uniform distribution on S' C C.
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